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Abstract. Let T be a bounded linear operator on a Hilbert space H .
We say that T has the hyponormal property if there exists a function f ,
continuous on an appropriate set so that f(|T |) ≥ f(|T ∗|). We investigate
the properties of such operators considering certain classes of functions on
which our definition is constructed. For such a function f we introduce the
f -Aluthge transform, T̃f . Given two continuous functions f and g with
the property f(t)g(t) = t, we also introduce the (f, g)-Aluthge transform,
T̃(f,g). The features of these transforms are discussed as well.
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1. Introduction

In this paper, B(H ) denotes the algebra of all bounded linear operators
on a complex Hilbert space H . An operator T is said to be self–adjoint if
T = T ∗. T is positive if it is self–adjoint and the points in the spectrum are
all positive. The spectrum of the operator T is denoted by σ(T ). Let T be a
bounded linear operator and T = U |T | be the polar decomposition of T where
U is a partial isometry and |T | = (T ∗T )

1
2 . This decomposition is unique as

long as the kernel of U is the same as that of |T |. The operator T is invertible
if and only if U is a unitary operator and |T | is invertible. We denote by R(T )
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and N (T ) the range and the kernel of T , respectively; see [4]. If T = U |T |
is the polar decomposition, then U∗U |T | = |T | and U |T |U∗ = |T ∗|. If U is
unitary, then Uf(|T |)U∗ = f(|T ∗|) for every function f that is continuous on
σ(T ). If U is not necessarily a unitary operator then Uf(|T |)U∗ = f(|T ∗|) is
valid for those continuous functions which are approximated by polynomials
without a constant term. If f is a continuous invertible function such that f

and its inverse, f−1, are both approximated by polynomials without a constant
term, in this case N (f(|T |)) = N (|T |) = N (U) and R(f(|T |)) = R(|T |) [4].
Let D(E) be the set of all increasing continuous positive functions f defined
on E, for which there exist two sequences of polynomials without a constant
term one of which converging to f and the other one converging to f−1. For
example if f(x) = x

1−x we could easily see that f ∈ D(E) for some E ⊂ R.
For 0 < λ < 1, the λ−Aluthge transform of T is defined by T̃λ = |T |λU |T |1−λ.

This notation was first introduced by Aluthge in the case when λ = 1
2 in [1]

during the investigating on the properties of p-hyponormal operators. We de-
note T̃ 1

2
by T̃ and call it the Aluthge transform of T . The Aluthge transform

of operators has received much attention today and it has been become a pow-
erful tool in operator theory [2, 3, 5, 7, 8, 9, 10, 11, 15]. It follows easily from
the definition that ∥T̃λ∥ ≤ ∥T∥. An operator T is said to be p-hyponormal
for some positive number p, if (T ∗T )p ≥ (TT ∗)p. In the case when p = 1,
A is called hyponormal. If T is invertible and log(|T |) ≥ log(|T ∗|) then it is
called log-hyponormal. Many authors study the properties of these types of
operators as the classes of non-normal operators. For instance we cite here
[1, 12, 14, 9, 13] from which this paper has been motivated. The classes of
p-hyponormal and log-hyponormal operators are contained in the greater class
of operators named the class of normaloid operators. An operator T is said
to be normaloid whenever rsp(T ) = ∥T∥ where rsp(T ) is the spectral radius
of T defined by rsp(T ) = sup{|λ|;λ ∈ σ(T )}; see [1] and [14]. In [6] the au-
thors discuss the polar decomposition of the Aluthge transform of operators.
In that work an interesting result was stated for a special class of operators
i.e for binormal operators. A bounded linear operator T is called binormal if
|T ||T ∗| = |T ∗||T |. We present some results related to the issue.

An interesting problem in operator theory is finding conditions on certain
operators under which such operators become normal. For example in [9] the
authors pay attention to this problem for p-hyponormal and log-hyponormal.
In this paper, we apply the same method to another type of operators, intro-
duced below to obtain similar results. We, in fact, introduce a new type of
operator named the class of operators with the hyponormal property. It is
noticed that we have p-hyponormal and log-hyponormal operators as spacial
cases. Then, we try to investigate some properties of this class of operators.
In this part, we essentially use the methods of [14]. We also generalize the
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notion of the λ-Aluthge transform of operators, which is close to this type of
operators.

2. Results

We start this section with the following definition in which we generalize the
notion of hyponormality of operators,

Definition 2.1. Let T be in B(H ), T is said to have the hyponormal property
if there exists an increasing function f , continuous on σ(|T |) ∪ σ(|T ∗|), such
that

f(|T |) ≥ f(|T ∗|).
We refer to such an operator T by f -hyponormal operator.

Note that log-hyponormal and p-hyponormal operators are the special cases
of f -hyponormal operators for f(t) = log t and f(t) = t2p respectively. Asso-
ciated with the f -hyponormal operators, we define the f -Aluthge transform of
operators as follows;

Definition 2.2. Let T = U |T | be the polar decomposition and f be continuous
on σ(| T |). The f -Aluthge transform of T , denoted by T̃f , is defined by

T̃f = (f(|T |)) 1
2U(f(|T |)) 1

2 .

It is easy to see that for the f -hyponormal operator T , the operator T̃f is
hyponormal. Henceforth, we assume that T = U |T | is the polar decomposition
of an f -hyponormal operator for some f ∈ D(σ(|T |)∪σ(|T ∗|)) unless otherwise
specified.

The following theorem is a generalization of the main result of [6] in which
we explain the polar decomposition of the f -Aluthge transforms.

Theorem 2.3. Let T = U |T | be the polar decomposition of the operator T

and let f ∈ D(σ(|T |) and (f(|T |)) 1
2 (f(|T ∗|)) 1

2 = V |(f(|T |)) 1
2 (f(|T ∗|)) 1

2 | be the
polar decomposition too. Then T̃f = V U |T̃f | is the polar decomposition.

Proof.

T̃f = (f(|T |)) 1
2U(f(|T |)) 1

2

= (f(|T |)) 1
2 (f(|T ∗|)) 1

2U

= V |(f(|T |)) 1
2 (f(|T ∗|)) 1

2 |U
= V U |T̃f |U∗U

= V U |T̃f |.

It is easy to check that
V Uξ = 0 ⇔ T̃fξ = 0

which implies that N (V U) = N (|T̃f |).
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Now it remains to show that V U is a partial isometry. We note that
N (V U)⊥ = N (|T̃f |)⊥ = R(|T̃f |). Let ξ ∈ N (V U)⊥. There exists a sequence
{ηn} in H , so that |T̃f |ηn → ξ as n goes to ∞. Thus

∥V Uξ∥ = ∥V U lim |T̃f |ηn∥ = lim ∥V U |T̃f |ηn∥ = ∥ lim T̃fηn∥

= lim ∥T̃fηn∥ = ∥|T̃f |ηn∥ = ∥ lim |T̃f |ηn∥ = ∥ξ∥

which completes the proof. □

Corollary 2.4. Let T = U |T | be the polar decomposition of the invertible
operator T . T̃f = U |T̃f | if and only if T is binormal.

Proof. The uniqueness of the polar decomposition T̃f = V U |T̃f | in the previous
theorem implies that T̃f = U |T̃f | if and only if V = P , the projection onto the
initial space of (f(|T |)) 1

2 (f(|T ∗|)) 1
2 . This is equivalent to

(f(|T ∗|)) 1
2 (f(|T |)) 1

2 = (f(|T |)) 1
2 (f(|T ∗|)) 1

2

which ensures that T is binormal if and only if T̃f = U |T̃f |. □

Here, we want to speak about another generalization of the λ-Aluthge trans-
form.

Definition 2.5. Let T = U |T | be the polar decomposition and f and g be two
continuous functions on σ(|T |). The (f, g)-Aluthge transform of T , denoted by
T̃(f,g), is defined by

T̃(f,g) = f(|T |)Ug(|T |).

Proposition 2.6. Let T = U |T | be the polar decomposition and let f, g ∈
D(σ(|T |)) so that f(t)g(t) = t for all t ∈ σ(|T |). Then σ(T ) = σ(T̃(f,g))

Proof. We first note that

σ(T )− {0} = σ(U |T |)− {0} = σ(Ug(|T |)f(|T |))− {0} = σ(f(|T |)Ug(|T |))− {0}.

Therefore it remains to show that T is invertible if and only if so is T̃(f,g).
If T is invertible, then U is unitary and |T | is invertible i.e. N (|T |) = 0

and R(|T |) = H . So by our assumption N (f(|T |)) = 0, R(f(|T |)) = H ,
N (g(|T |)) = 0 and R(g(|T |)) = H . Thus f(|T |) and g(|T |) are invertible
which imply that T̃f,g is invertible.

Now let T̃(f,g) is invertible. This implies that R(f(|T |)) = H and N (g(|T |)) =
0. So R(|T |) = H and N (|T |) = 0. Therefore |T | is invertible. Hence f(|T |)
and g(|T |) are invertible which by the invertibility of T̃(f,g) ensure that U is.
Thus T is invertible. □

We prove the next two results by using some ideas of [9].

Theorem 2.7. If Un0 = U∗ for some positive integer n0, then T is normal.
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Proof. Since T is f -hyponormal, we have f(|T |) ≥ f(|T ∗|) = Uf(|T |)U∗.
multiplying both sides of this inequality by U and U∗, we reach f(|T |) ≥
Uf(|T |)U∗ ≥ U2f(|T )U∗2. Continuing this process, we reach a string of in-
equalities as follows

f(|T |) ≥ Uf(|T |)U∗ ≥ U2f(|T )U∗2 ≥ · · · ≥ Un0+1f(|T |)U (n0+1)∗ ≥ · · · . (2.1)

Due to our assumption U∗U = Un0+1 = U (n0+1)∗ is the projection onto
R(f(|T |)). So f(|T |) = Un0+1f(|T |)U (n0+1)∗ which implies that f(|T |) =

f(|T ∗|). Since f is increasing it has inverse f−1, which implies that f−1f(|T |) =
f−1f(|T ∗|). Thus the spectral mapping theorem ensures that |T | = |T ∗| i.e. T

is normal. □

Theorem 2.8. If, either Un0 → 0 or U (n0)∗ → 0 where the limits are taken in
the strong operator topology, then T is normal.

Proof. Let ξ ∈ H . Since f(|T |) > 0, by (2.1) we have that

∥(f(|T |)) 1
2 ξ∥ ≥ ∥(f(|T ∗|)) 1

2 ξ∥ = ∥(f(|T |)) 1
2U∗ξ∥ ≥ · · · ≥ ∥(f(|T |)) 1

2U∗nξ∥ ≥ · · · .

On the other hand∣∣∣∥(f(|T |)) 1
2U∗nξ∥ − ∥(f(|T |)) 1

2 ξ∥
∣∣∣ ≤ ∥(f(|T |)) 1

2 ∥∥U∗nξ − ξ∥ → 0

as n → 0. Thus we have ∥(f(|T |)) 1
2 ξ∥ = ∥(f(|T ∗|)) 1

2 ξ∥. Hence f(|T |) = f(|T ∗|)
which implies that |T | = |T ∗|. Therefore T is normal. □

Theorem 2.9. Let N (U) = N (U∗). If T̃ is normal, then so is T .

Proof. T̃ is normal so

|T | 12U∗|T |U |T | 12 = |T | 12U |T |U∗|T | 12

which implies that

|T | 12 (U∗|T |U − U |T |U∗)|T | 12 = 0.

Hence
|T | 12 (U∗|T |U − U |T |U∗) = 0

on R(|T |). Let ξ ∈ N (|T |). So ξ ∈ N (U) = N (U∗) which yields that

|T | 12 (U∗|T |U − U |T |U∗)ξ = 0.

Therefore |T | 12 (U∗|T |U − U |T |U∗) = 0 on whole space H . Taking adjoint we
get (U∗|T |U − U |T |U∗)|T | 12 = 0. So U∗|T |U − U |T |U∗ = 0 on R(|T |). Let
ξ ∈ N (|T |). Similar to the argument stated above we have U∗|T |U = U |T |U∗.
Using functional calculus we come to

U∗f(|T |)U = Uf(|T |)U∗.

On the other hand

f(|T |) ≥ f(|T ∗|) = Uf(|T |)U∗ = U∗f(|T |)U
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because of the assumption that T is f -hyponormal. Thus

f(|T ∗|) = Uf(|T |)U∗ ≥ f(|T |) ≥ f(|T ∗|)

whence f(|T |) = f(|T ∗|), which implies that |T | = |T ∗|. Therefore T is normal.
□

Theorem 2.10. Let U be unitary, σ(U) be contained in some open semicircle
and let N (f(|T |)) be a reducing subspace for U . Then T̃f is normal if and
only if so is T .

Proof. Let T̃f be normal. Thus

(f(|T |)) 1
2Uf(|T |)U∗(f(|T |)) 1

2 = (f(|T |)) 1
2U∗f(|T |)U(f(|T |)) 1

2 . (2.2)

So
(f(|T |)) 1

2 (Uf(|T |)U∗ − U∗f(|T |)U) (f(|T |)) 1
2 = 0.

Hence (f(|T |)) 1
2 (Uf(|T |)U∗ − U∗f(|T |)U) = 0 on R(f(|T |). Now let, ξ ∈

N (f(|T |). Thus Uξ ∈ N (f(|T |) and U∗ξ ∈ N (f(|T |) by the assumption.
Hence

(f(|T |)) 1
2 (Uf(|T |)U∗ − U∗f(|T |)U)ξ = 0.

We have just shown that

⟨(f(|T |)) 1
2 (Uf(|T |)U∗ − U∗f(|T |)U)ξ, ξ⟩ = 0

for all ξ ∈ H which means that

(f(|T |)) 1
2 (Uf(|T |)U∗ − U∗f(|T |)U) = 0.

Taking adjoint, we get

(Uf(|T |)U∗ − U∗f(|T |)U)(f(|T |)) 1
2 = 0.

So Uf(|T |)U∗ − U∗f(|T |)U = 0 on R(f(|T |). Let ξ ∈ N (f(|T |). Therefore
Uξ ∈ N (f(|T |) and U∗ξ ∈ N (f(|T |) by our assumption. Thus U∗f(|T |)Uξ =

Uf(|T |)U∗ξ = 0 which implies that Uf(|T |)U∗ = U∗f(|T |)U . Invoking func-
tional calculus we see that U |T |U∗ = U∗|T |U . Hence |T |U2 = U2|T |. Since
σ(U) is contained in some open semicircle, we observe that |T |U = U |T |. This
completes the proof because U is unitary. □

The conclusion of the following theorem has been already proved for p-
hyponormal operators in [1, 14].

Theorem 2.11. If U is unitary, then the eigenspaces of U reduce T .

Proof. Let
Q := f(|T |)− f(|T ∗|) = f(|T |)− Uf(|T |)U∗.
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Thus Q ≥ 0 by our assumption. Let λ ∈ σp(U) and Mλ = {ξ ∈ H ;Uξ = λξ}.
U is unitary thus U∗ξ = λ̄ξ for any ξ ∈ Mλ. Hence

⟨Qξ, ξ⟩ = ⟨f(|T |)ξ, ξ⟩ − ⟨Uf(|T |)U∗ξ, ξ⟩
= ⟨f(|T |)ξ, ξ⟩ − ⟨f(|T |)λ̄ξ, λ̄ξ⟩ = 0.

Since Q is positive we have that Qξ = 0. So f(|T |)ξ = Uf(|T |)U∗ξ or
equivalently Uf(|T |)ξ = λf(|T |)ξ. This implies that f(|T |)ξ ∈ Mλ. So
(f(|T |))nξ ∈ Mλ for all positive integers n and hence p(f(|T |))ξ ∈ Mλ for all
polynomials p. But, there exists a sequence of polynomials pn, without a con-
stant term, converging to f−1 uniformly. Therefore we have that |T |ξ ∈ Mλ □

In the next lemma, T is not necessarily assumed to be an f -hyponormal
operator.

Lemma 2.12. Let T = X + iY be the Cartesian decomposition of operator T

where X is self-adjoint and Y ≥ 0 and let T0 be another operator defined by
T0 = X + if(Y ). If T0 is hyponormal, then the eigenspaces of Y reduce X.

Proof. Let y ∈ σp(Y ) and My = {ξ ∈ H ;Y ξ = yξ} be the eigenspace corre-
sponding to y. Then for any ξ ∈ My, we have that f(Y )ξ = f(y)ξ. Hence

⟨i[X, f(Y )]ξ, ξ⟩ = i(⟨Xf(Y )ξ, ξ⟩ − ⟨f(Y )Xξ, ξ⟩)
= i(⟨Xf(y)ξ, ξ⟩ − ⟨Xξ, f(y)ξ⟩) = 0.

Since i[X, f(Y )] is positive we see that [X, f(Y )]ξ = 0 which implies that
f(Y )Xξ = Xf(Y )ξ = f(y)Xξ. This implies that Y Xξ = yXξ . So My

reduces X. □

Theorem 2.13. Let U be unitary. if σ(U) ̸= {z; |z| = 1}, then the eigenspaces
of |T | reduce T .

Proof. Without loss of generality, we may assume that 1 /∈ σ(U) and consider
the inverse Cayley transform of U by B = i(U + I)(U − I)−1. Let Q :=

f(|T |)− f(|T ∗|) = f(|T |)− Uf(|T |)U∗. So

i[B, f(|T |)] = 2(U − I)−1Q(U∗ − I)−1,

(see [14]) which is positive by our assumption. This shows that the eigenspaces
of |T | reduce B and consequently they reduce U . So they reduce T as well. □

In the following, we want to speak about symbols introduced by Xia in [14]
which is useful for the problem that if f -hyponormal operators are normaloid.
This makes sense by knowing the fact that p-hyponormal and log-hyponormal
operators are normaloid; see [1, 12, 14].
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Suppose B is a contraction. Denote

B[n] =

{
Bn , n ≥ 0

Bn∗ , n < 0.

If S±
B (T ) := st− limm→∓∞ B[−m]TB[m] exist, then the operators S±

B are called
the polar symbols of T related to B. Given operator B, denote

S±
B = {T ∈ B(H );S±

B (T ) exists}.

The following lemmata are held,

Lemma 2.14. [14] Let T = U |T | be the polar decomposition. If U is a unitary
operator and |T | ∈ S±

U then S±
U (|T |) are positive,

|S±
U (T )| = S±

U (|T |),

and US±
U (|T |) = S±

U (T ) are normal.

Lemma 2.15. [14] Let T be a normal operator and f be a continuous function
on σ(T ). If B is unitary and T ∈ S±

B ∩ (S±
B )∗, then f(T ) ∈ S±

B and

f(S±
B (T )) = S±

B (f(T )).

Lemma 2.16. Let T = U |T | be the polar decomposition of the f -hyponormal
operator T and let U be unitary. Then the operator symbols

S±
U := lim

m→∓∞
Um∗TUm

exist.

Proof. f -hyponormality of T implies that f(|T |) ≥ Uf(|T |)U∗. Multiplying
both sides by U and U∗, we reach

U∗f(|T |)U ≥ f(|T |) ≥ Uf(|T |)U∗.

Let n be a positive integer. To continue this process, we come to a string of
inequalities as follows

Un∗f(|T |)Un ≥ · · · ≥ U∗f(|T |)U ≥ f(|T |) ≥ Uf(|T |)U∗ ≥ · · · ≥ Unf(|T |)Un∗.

Thus the sequence {Un∗f(|T |)Un} is bounded and increasing and {Unf(|T |)U∗n}
is bounded and decreasing which imply that

S±
U (f(|T |)) := lim

m→∓∞
Um∗f(|T |)Um

exist. Therefore S±
U (T ) exist and

S±
U (T ) = lim

m→∓∞
Um∗TUm = Ug[S±

U (f(|T |))].

□
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In the following, we show that f -hyponormal operators are normaloid for a
certain class of functions f . Let C P(E) consists of those continuous functions
f , for which there exists a sequence of polynomials, with positive coefficients,
without a constant term converging to f , uniformly.

Lemma 2.17. Let A be a positive operator and let f ∈ C P(σ(A)). Then
∥f(A)∥ ≤ f(∥A∥).

Proof. Let p(x) = anx
n + an−1x

n−1 + · · ·+ a1x be a polynomial where ais are
all positive. We have that

∥p(A)∥ = ∥anAn + an−1A
n−1 + · · ·+ a1A∥

≤ an∥A∥n + an−1∥A∥n−1 + · · ·+ a1∥A∥
= p(∥A∥).

Now the result is obviously concluded from these equations. □

Theorem 2.18. Let g be the inverse of f and g ∈ C P(σ(A)). If U is unitary,
then rsp(T ) = ∥T∥.

Proof. By the previous Lemma we see that f(|T |) ≤ S+
U (f(|T |)) ≤ ∥f(|T |)∥.

therefore ∥S+
U (f(|T |))∥ = ∥f(|T |)∥. Since S+

U (f(|T |)) is positive

∥S+
U (f(|T |))∥ = ∥f(|T |)∥ ∈ σ(S+

U (f(|T |))).

Thus

g(∥f(|T |)∥) ∈ σ
(
g[(S+

U (f(|T |)))]
)
= σ(S+

U (|T |)) (2.3)

But ∥T∥ ≤ g(∥f(|T |)∥) and

rsp(S
+
U (|T |)) = ∥S+

U (|T |)∥ ≤ ∥T∥ ≤ g(∥f(|T |)∥)

which by (2.3) yields that ∥T∥ = g(∥f(|T |)∥). So ∥T∥ ∈ σ(S+
U (|T |)) and the

rest of the proof is similar to the proof of [1, Theorem 9]. □
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